“Permissive Hypoventilation” in a Swine Model of Hemorrhagic Shock

Temple University Hospital
Department of Surgery
October 24, 2013
No Disclosures
Most penetrating trauma patients in severe hemorrhagic shock receive positive pressure ventilation (PPV) upon transport to definitive care
- Intubation and manual ventilation
- Bag-valve mask (BVM) ventilation

Intubation clearly shown to have detrimental effects for penetrating trauma patients in urban locations
Background

- Whether BVM ventilation improves outcomes in severe shock-state has not been studied
 - Previous study showing detrimental effects of BVM\(^1\)
- New ACLS guidelines prioritizing uninterrupted chest compressions over advanced airway
 - Backed by animal and clinical studies
- Consideration should be given to immediate transportation without airway intervention

Goals

- Test the idea of “permissive hypoventilation” – where manual breaths are not given and 100% oxygen is administered passively via facemask
Hypothesis

In severe low-flow states, PPV would have harmful physiological effects and that “permissive hypoventilation” would result in better outcomes.
Methods

- Yorkshire swine weighing 30.0 kg
- Started on a propofol drip
- Three groups of animals
 1) Intubation and manual ventilation (n=6)
 2) BVM ventilation with ambu-bag (n=7)
 3) Permissive hypoventilation with face mask (n=6)
Methods

- Placement of Swan-Ganz catheter through central venous introducer
- Femoral arterial line placed
- 14-gauge catheter with stopcock in carotid artery for exsanguination
- Baseline arterial blood gas (ABG), laboratory values, and hemodynamic parameters
Outcomes

- Stopcock opened and animal was exsanguinated
- Hemodynamic and laboratory values measured at 10 minute intervals
- Primary outcome was time until death
- Secondary Outcomes
 - Hemodynamic Parameters – cardiac index, CVP
 - Metabolic values – pH, lactic acid, O₂
 - End-organ damage – creatinine
Mean Survival:
Intubated: 51.1 mins
Bag-Valve Mask: 48.5 mins
Facemask: 50.0 mins
p = 0.84
Thermoregulation and Hemodynamics
Body Temperature

- **Intubated**
- **Bag-valve**
- **Facemask**

✖ p<0.001 when compared to intubated and BVM group at all time points
Systolic Blood Pressure

![Graph showing systolic blood pressure over time for different methods: Intubated, Bag-valve, and Facemask. The graph indicates a significant difference (p<0.001) compared to the intubated group at all time points.]
Central Venous Pressure

- Intubated
- Bag-valve
- Facemask

<p><0.001 when compared to intubated group at 10 minutes</p>
Cardiac Output

- Intubated
- Bag-valve
- Facemask

※ p<0.001 when compared to intubated and BVM group at all time points
Acid-Base Status and Gas Exchange
pH

\[\times \quad p < 0.001 \text{ when compared to intubated and BVM group at all time points} \]
Carbon Dioxide

- Intubated
- Bag-valve
- Facemask

\(\times p<0.001 \) when compared to intubated and BVM at all time points
Bicarbonate Levels

- Intubated
- Bag-valve
- Facemask

- p<0.001 when compared to intubated and BVM group at all time points
Metabolic Changes and End-Organ Damage
Lactic Acid

- **Intubated**: p<0.001 when compared to intubated at all time points
- **Bag-valve**: p<0.05 when compared to BVM at 30 and 50 minutes
Creatinine Levels

- Intubated: ➠ p<0.05 when compared to BVM at all time points
- Bag-valve: ★ p<0.05 when compared to intubated at 40 minutes
Creatinine Levels by Weight

- Intubated
- Bag-valve
- Facemask

p<0.05 when compared to intubated and BVM at all time points
Conclusions

- Positive pressure ventilation, whether by endotracheal tube or BVM, does not result in a survival advantage
 - Worse thermoregulation
 - Hemodynamic compromise
- Worse perfusion vital organs
 - Higher lactic acid levels
 - Worse increase in creatinine
Conclusions

- “Permissive Hypoventilation” leads to decreased CO$_2$ elimination
- More profound respiratory acidosis
 - Evidence of protective effects of hypercapnia
- Profound alkalosis with positive pressure ventilation
Conclusions

- Consideration should be given to immediate transportation without airway intervention.
- Similar to change with ACLS guidelines, prospective, randomized trials are needed to determine best mode of ventilation for penetrating trauma patients in urban locations.
Limitations

- Small sample size
- Use of propofol – hemodynamic depression
 - Ideal for large animal studies
- Examined only physiological changes
 - Inflammatory markers
Questions?